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Abstract

We propose a novel approach for estimating the similarity between the trends of two time series,

which has been an important problem in the fields of finance, economics and econophysics. We

introduce the exit-time correlation (EC) to measure this similarity based on the exit-time method

recently used as inverse statistics in financial time series analysis. We use a phase-noise induced

Fourier transform method to illustrate the efficiency of our approach compared with the multiscale

cross correlation method. The exit-time correlation serves as the inverse statistics for the multiscale

cross correlation in analyzing correlation between multivariate time series. The application of our

approach to high-frequency foreign exchange rates reveals that the exit-time correlation is related

to time organization structure in interactions with a long-range time scale.
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I. INTRODUCTION

Recently, the study of time correlations in complex systems such as economic, financial

and physical systems has provided us with a deeper insight into dynamical information

and structures. These studies have used the correlation matrix to understand the overall

structure in the dynamics of interactions between data in the system level, which is mainly

constructed from the cross-correlation coefficients. However, the cross-correlation coefficient

has a limitation in that it provides only information about interactions between two fluc-

tuating time series in a short-range time scale. The subunits of complex systems in nature

are often found to have interactions in a long-range time scale as well. Information about

correlation between time series in a long-range time scale can provide deeper understanding

of the dynamic interaction structure of complex systems.

In this paper, we introduce the exit-time correlation (EC) method that can measure a

similarity between trend behaviors of multivariate time series. The trend behavior of the

univariate time series has been studied through various statistical methods including the

auto-correlation function, detrended fluctuation analysis (DFA) and multiscale trend analy-

sis and is related to the correlation property in a long-range time scale. The relation between

trend behaviors of multivariate time series has been investigated by using a moving average

decomposition, a multivariate Fourier transform, wavelet analysis and cointegration, etc.

However, these methods contain many control parameters and constraints, and so are not

suitable for analyzing systems containing many multivariate subunits.

We extend the exit-time method to multivariate time series analysis in order to describe

the degree of correlations between trend behaviors of time series. In the context of econo-

physics, the exit-time method was recently suggested, partly inspired by inverse statistics in

turbulence, as an alternative for studying the distribution of waiting times needed to reach

a fixed level of the return. The exit-time correlation method estimates correlations between

exit-time series derived from multivariate time series, which produces correlation coefficient

in the normalized region between −1 and 1.

We introduce a phase-noise induced Fourier transform method to generate time series with

diverse correlations for a given trend behavior of the reference data, by adding noise to com-

ponent signals in each frequency domain of the reference data. Using this method, we verify

the usefulness of our exit-time correlation method in comparison with the multiscale cross
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correlation (MCC). The exit-time correlation can be interpreted as the inverse statistics for

multiscale cross correlation in analyzing correlations between multivariate time series. We

apply our method to high-frequency foreign exchange (FX) rates and show that the correla-

tion between trend behaviors of time series is related to the time organization structure in

interactions between multivariate time series in a long-range time scale.

II. EXIT-TIME CORRELATION METHOD

A. Exit-time series

The exit-time method has been investigated as inverse statistics for financial time series

and is defined as follows :

τρ = inf{δt = t2 − t1 : δs = s(t2)− s(t1)≥ρ, t2 > t1}, (1)

where the s(t) is a log price at time t. The inverse statistics investigates the effects of inter-

mittency in fully developed turbulence by averaging moments of the distance as a function

of a fixed velocity difference. This method proposes an alternative way for describing and

analyzing a turbulent velocity field by inverting the structure function equation. The exit-

time method considers the distribution of minimal time τρ to reach a fixed level of return ρ

instead of studying the distribution of returns δs as a function of a fixed time period δt.

The previous works uncovered a novel stylized fact in financial time series that the distri-

bution of exit-time τρ follows a power law, p(τρ)∼τ−α
ρ , with α≈1.5 for large τρ universally.

Moreover, for fractional Brownian motion with a Hurst exponent H the distribution of exit-

times exhibits scaling behavior of p(τρ)∼τ
−(2−H)
ρ for large τρ. The financial time series has

been usually regarded as a random walk with the Hurst exponent H (∼0.5). Therefore, the

statistics of the distribution p(τρ) can give information on the trend behavior of a given time

series.

In our method, the exit-time series τρ(t) is derived from the exit-time method in Eq. (1)
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as follows :

τ+ρ = inf{τ+ : δs = s(t+ τ+)− s(t)≥ρ}

τ−ρ = inf{τ− : δs = s(t+ τ−)− s(t)≤− ρ},

τρ(t) =


τ+ρ , if τ+ρ < τ−ρ

−τ−ρ , if τ+ρ > τ−ρ

0 , if τ+ρ , τ
−
ρ → ∞ ( ρ > 0 , t = 1, 2, ..., N ),

(2)

where s(t) is a time series with a trend behavior (Fig. 1) and τ+ρ (τ
−
ρ ) is a minimal time span

needed for the difference δs to exceed ρ(−ρ). The exit-time series τρ(t) gives information

on whether the first event of the signal s(t) is s(t) + ρ or s(t) − ρ after time t. In Fig. 1,

the signal s(t) reaches s(t1) + ρ(s(t2)− ρ) for the first time after time t1(t2), and hence the

value of exit-time τρ(t) is τ1(-τ2) at time t1(t2).

The exit time series τρ(t) becomes 1 or −1 in ascending or descending trends of s(t),

respectively, for very small ρ. As ρ increases, τρ(t) describes the trend behavior of s(t) in

a long-range time scale. The domination of small |τρ(t)| implies a steeply ascending or de-

scending trend, while large |τρ(t)| indicates a long-lasting trend. Since there can be no event

to reach s(t)+ρ or s(t)−ρ as t approaches N , we define the exit time τρ(t) as zero in this case.

B. Exit-time Correlation

In this section, we introduce the exit-time correlation method, which estimates the degree

to which the whole trends of two time series are correlated.

When the exit time series τρ(t) is positive(negative), the absolute value |τρ(t)| is inversely

proportional to the slope of the ascending(descending) trend of time series s(t) for a given

fluctuation range ρ. We rescale the original signals, s1(t) and s2(t), to normalize the range

of ρ into the unit interval before deriving exit-time series, τ 1ρ (t) and τ 2ρ (t), as follows :

s
′

1(t) =
s1(t)−min(s1)

max(s1)−min(s1)

s
′

2(t) =
s2(t)−min(s2)

max(s2)−min(s2)
(t = 1, 2, ..., N ), (3)
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where the functions, min(s(t)) and max(s(t)), give the minimum and maximum values of

time series s(t) for all time t, respectively. Therefore, the rescaled signals, s
′
1(t) and s

′
2(t),

and ρ can be normalized into the unit interval of [0, 1] as shown in Fig. 1. The exit-time

correlation CE(ρ) estimates the similarity between exit time series τ 1ρ (t) and τ 2ρ (t) derived

from s
′
1(t) and s

′
2(t), for a given scale ρ. First, we define the strength of similarity X(t)

between τ 1ρ (t) and τ 2ρ (t) at time t for a given scale ρ as follows :

X(t) =


min{τ1ρ (t),τ2ρ (t)}
max{τ1ρ (t),τ2ρ (t)}

if τ 1ρ (t)τ
2
ρ (t) ̸= 0

0 otherwise.

Then X(t) exists on the interval of [−1, 1] and the exit-time correlation CE(ρ) for a given

scale ρ is defined by

CE(ρ) =
1

N − T

N∑
t=1

X(t) ( 0 < ρ < 1 ),

T =
N∑
t=1

(1− |sign(τ 1ρ (t)τ 2ρ (t))|), (4)

where the value of function sign(x) becomes −1, 0 and 1 when x<0, x=0 and x>0, respec-

tively. Therefore, the CE(ρ) is the average of X(t) during the time periods with non-zero

τ 1ρ (t)τ
2
ρ (t). As X(t) approaches 1(−1), the two time series, s1(t) and s2(t), tend to have a

similar time span to reach the same(opposite) fluctuation range ρ after time t. Consequently,

the CE(ρ) also lies between −1 and 1, and estimates the similarity between slopes of ascend-

ing or descending trends of s1(t) and s2(t) within a fluctuation range ρ. Note that CE(ρ)

approaches 1(−1) and 0 when the trend behaviors of s1(t) and s2(t) are correlated(anti-

correlated) and uncorrelated, respectively.

III. ESTIMATING SIMILARITY BETWEEN TREND BEHAVIORS OF MULTI-

VARIATE TIME SERIES

A. Phase-noise induced Fourier transform

We introduce a phase-noise induced Fourier transform method to generate time series with

diverse correlation properties for the trend behavior of the reference signal. This method
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considers correlation in a frequency domain, inspired by the Fourier surrogate method for

discrete time series sampled at evenly spaced time intervals as follows :

s(t) =
N−1∑
k=0

ckexp[i(
2πk

N
t+ ϕk)],

s̄(t) =
N−1∑
k=0

ckexp[i(
2πk

N
t+ ϕk)]exp(iαk) (5)

( t = 0, 1, 2, ... , N − 1, N = 2η ),

where the phase ϕk of the signal s(t) has a symmetry of ϕk = −ϕN−k for 2
(η−1) < k ≤ 2η−1,

and αk are independent random numbers with a uniform distribution in [0, 2π] and the

same symmetry as ϕk. After the randomization of the Fourier phases ϕk of s(t), this method

generates a signal s̄(t) with the same linear features as s(t) but without nonlinearities,

while preserving the amplitude ck of the Fourier transform.

We can generate a signal s̄(t) with diverse correlations for trend behavior of the reference

signal s(t) by controlling the magnitudes of random phases αk in each frequency domain as

follows :

αk =


0 if 0 < k ≤ 2(η−1)−k′

iid(0, 2π) if 2(η−1)−k′ < k ≤ 2(η−1) − 1 ( 0 < k′ < η − 1 ),

(6)

where iid(0, 2π) denotes independent identically distributed random numbers between 0 and

2π. In Eqs. (5) and (6), the phases ϕk of signal components of the original signal s(t) in a

high frequency domain with 2(η−1)−k′ < k ≤2(η−1) − 1 are randomized by αk, whereas the

phases in the low frequency domain with 0 < k ≤ 2(η−1)−k′ are conserved.

Therefore, the signal components of s̄(t) have the same trend behaviors as ones for s(t) in

the low frequency domain. As the randomization level k′ increases, the signal s̄(t) behaves

more heterogeneously with respect to the reference signal s(t), beginning from the high

frequency components and moving to the lower ones.

Fig. 2 shows that the similarity between trend behaviors of s(t)(solid line) and s̄(t)(dotted

line) is destroyed as k′ increases. We generated a random walk signal as the reference signal

s(t) with a Hurst exponent H (= 0.5) and a signal length η = 17 in Eq. (5) by using the

relation |ck|2∼ k−2H−1.
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B. Multiscale cross correlation

We compare the multiscale cross correlation and exit-time correlation method for classi-

fying the similarity between trend behaviors of s(t) and s̄(t) depending on k′. The multiscale

cross correlation measures the correlation between fluctuations of two time series on a fixed

time scale τ as follows :

CM(τ) =
⟨(∆s1− < ∆s1 >)(∆s2− < ∆s2 >)⟩

σ1(τ)σ2(τ)
, (7)

where the signals ∆s1 and ∆s2 are defined as

∆s1(t, τ) = s1(t+ τ)− s1(t)

∆s2(t, τ) = s2(t+ τ)− s2(t) (t = 1, 2, ..., N − τ). (8)

In Eq. (7), the quantities σ1(τ) and σ2(τ) correspond to the standard deviations of ∆s1(t, τ)

and ∆s2(t, τ), respectively. The multiscale cross correlation CM(τ) lies in [−1, 1] and

approaches 1(−1) as s1(t) and s2(t) become correlated(anticorrelated) for fluctuations on

time scale τ . The exit-time correlation CE(ρ) estimates the correlation between two time

series on a fixed fluctuation scale ρ, so that it can be interpreted as inverse statistics for

CM(τ) in analyzing the correlation between two time series.

The s(t) and s̄(t) are generated as random walk signals with length N = 217(η = 17)

by Eqs. (5) and (6). The twenty samples of s̄(t) for a reference signal s(t) are generated for

each randomization level k′. The CE(ρ) and CM(τ) are estimated on varying scales ρ and

τ , respectively, for s(t) and s̄(t). Fig. 3 shows CM(τ) for τ = 1 between s(t) and twenty

sample s̄(t) signals as the randomization level k′ is varied from 8 to 15 with an increment

of 0.5 in Eq. (6). The plotted symbols and errorbars represent mean values and standard

deviations derived from twenty values of CM(1) for each k′. The CM(1) is the same as the

cross-correlation coefficient (Eq. (7)) and cannot classify the variations in similarity between

trend behaviors of s(t) and s̄(t) for large k′ well.

Fig. 4 shows CE(ρ) and CM(τ) for varying scales of ρ and τ as k′ is increased. The plotted

symbols and errorbars correspond to mean values and standard deviations of twenty samples

of CE(ρ) and CM(τ) as in Fig. 3. In Fig. 4(a), the CE(ρ) for small ρ (= 0.02) converges close

to zero as for CM(1) in Fig. 3 because CE(ρ) reflects the correlation between fluctuations of

s(t) and s̄(t) in a short time scale for small ρ.
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However, CE(ρ) decreases monotonically as the scale ρ increases, so that it classifies the

variations in similarity between trend behaviors of s(t) and s̄(t) as a function of k′ well

as in Fig. 2. On the other hand, CM(τ) exhibits similar behaviors for all scales τ , nearly

saturating for k′ ≥ 11 and cannot detect the effect of k′ on the correlation between s(t)

and s̄(t) sufficiently. Note that the s(t) and s̄(t) for k′ = 11 in Fig. 2 exhibit similar large

scale trend behavior. Fig. 5 shows that CE(ρ) reflects the variation of correlations between

s(t) and s̄(t) more effectively than CM(τ) for large k
′. The increase in standard deviations of

CE(ρ) and CM(τ) as a function of k′ in Fig. 5 may be caused by an instability in the signal

s̄(t) due to the noise level growth.

In Eq. (4), CE(ρ) is not dependent on the size of fluctuations of s1(t) and s2(t) since

it restricts the range of fluctuations within an interval, [−ρ, ρ], whereas CM(τ) in Eq. (7)

reflects the information about magnitudes of fluctuations of s1(t) and s2(t) for scale τ . The

different results in CE(ρ) and CM(τ) in Figs. 4 and 5 may originate from this difference.

C. The exit-time correlation for foreign exchange rates

This section applies the exit-time correlation method to multivariate foreign exchange

(FX) rates and investigate the relation between correlation structures, detected by CE(ρ),

with linear correlations (CM(1)) between these data.

In Fig. 6(a), four foreign exchange rate signals with very similar trend behaviors are

shown. The dashed line in Fig. 6(b) corresponds to CE(ρ) with ρ=0.2 for all pairs of foreign

exchange rate data. We applied a multivariate random-shuffle surrogate method to investi-

gate the time-organization structure of correlation detected by CE(ρ). The random shuffle

surrogate method has been proposed to investigate whether a univariate fluctuation signal

has some kind of dynamic structure. This method is extended to multivariate time series

analysis as follows.

In Eq. (8), the fluctuations, ∆s1(t, 1) and ∆s2(t, 1), are randomized by the same random

time index g(t), producing surrogate fluctuation signals, ∆s1(g(t), 1) and ∆s2(g(t), 1). The

random integer sequence g(t) has a one-to-one correspondence with all integers between 1

and N − 1. Then, the cross correlation (CM(1)) between surrogate fluctuation signals is the

same as the cross correlation between original fluctuation signals and the distribution of each

fluctuation signal is conserved. We reconstruct surrogate signals s′1(t) and s′2(t) by integrat-
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ing ∆s1(g(t), 1) and ∆s2(g(t), 1) cumulatively. We generate twenty surrogate pairs for each

possible pair of signals and test the null hypothesis that the statistics estimated by CE(ρ)

can be fully described by a linear correlation structure (CM(1)) between two signals. The

symbols plotted on the dotted line in Fig. 6(b) represent the mean values of CE(ρ) derived

from twenty surrogate pairs with the errorbar corresponding to the 95 percent confidence

region for the null hypothesis. Fig. 6(b) suggests that the null hypothesis is rejected for all

cases and the correlation estimated from CE(ρ) is related to a time organization structure

which cannot be detected by a linear cross correlation method.

IV. CONCLUSION

In summary, we introduced an exit-time correlation method which estimates the degree

of similarity between trend behaviors of multivariate time series. This method measures

the correlation between the exit time series derived from original multivariate time series

in a normalized region between −1 and 1. We have shown that the exit time correlation

CE(ρ) efficiently reflects the variations in correlation between test time series which cannot

be detected well by a linear cross correlation as in the cases of foreign exchange rates.

The cross correlation matrix has been used to investigate a dynamical correlation structure

in the interactions between data in the system level. However, the cross correlation provides

only information about correlations in a short range time scale. The exit time correlation

estimates correlations between multivariate time series in a long range time scale and can be

quantified in a normalized region between −1 and 1 like as the cross correlation coefficient.

Therefore, the exit time correlation matrix can be constructed and provide the information

about dynamical correlation structure in interactions between subunits of complex systems

in a long range time scale. In particular, the studies of the topological structure in the cross

correlation matrix between financial time series have been exploited. We can obtain more

information about the macroscopic market structure from analysis of dynamic interactions

between financial time series based on the exit time correlation matrix. Moreover, we expect

that this information can be applied to portfolio optimization and optimal hedging analysis

in econometrics.
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FIG. 1: The exit time τρ(t) at t1 and t2 for a signal s(t) : τρ(t1) = τ1, τρ(t2) = −τ2. s(t) is a

rescaled signal from its original signal by Eq. (3).
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FIG. 3: The cross correlation coefficients with τ = 1 between s(t) and twenty s̄(t) , averaged over

twenty samples, in Eqs. (5) and (6). The symbols(■) and errorbars correspond to the mean values

and the standard deviations derived from all pairs for each k′.
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FIG. 4: (a) CE(ρ) as a function of the randomization level k′ for scales ρ(= 0.02, 0.11, 0.2 and 0.3).

(b) The variation of CM(τ) for k′ with scales τ(= 100, 200, 300 and 400). The plotted symbols

and errorbars correspond to mean values and standard deviations derived from all pairs in each k′.
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FIG. 5: (a) CE(ρ) as a function of the randomization level k′ for scales ρ(= 0.02, 0.11, 0.2 and 0.3).

(b) The variation of CM(τ) for k′ with scales τ(= 100, 200, 300 and 400). The plotted symbols

and errorbars correspond to mean values and standard deviations derived from all pairs in each k′.
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ESP(Spain), FRF(France) and NLG(Netherland) [9]. The signals are rescaled by Eq. (3) from

the originals. (b) The exit time correlation for pairs between original signals (■) and between

multivariate shuffled signals (•). The plotted symbols (•) and errorbars correspond to mean values

and the 95 percent confidence region for the null hypothesis derived from twenty surrogate pairs.
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